CENTRAL SYMMETRY

Draw along. Let the S be its central point.

It is clear that AS = BS.

Points A and B are symmetryc to S. S is centre of symmetry.

For points A and B say that they are symmetric with respect to point S. Point S is the center of symmetry.

More can be said that the point A to point B symmetric relative to point S, ie that B is symmetric with respect to A in S.

Mapping of each point A and some planes α translates into a point A' which is symmetric to the point A in relation to the point S with the plane α , called the *central plane of symmetry* α with center in S Central symmetry is usually marked with I_s , of course, if your teacher marks it differently and you do so...

If you are not confused, **axisymmetry** is similarly marked I_s , with a team that was down slightly in the index letter s.

For figure F from plane α we say that maps in figure F is central symmetry I_S if each point of A figure F match point with a figure A figure F is a central symmetric point A: $A = I_S(A)$ and vice versa.

Example 1.

Along AB is given. Construct along the central symmetry if the center of symmetry, the point S, no longer belongs.

Solution:

Merge vertices given long with a center of symmetry S and extend to the other side ... (picture 1) Sting compass point in S, we take the distance to A (ie SA) and move, we got a point A `, and also to perform to point B, then the distance SB switch to another page and get `B (picture2)

Obtained merge point A 'and B', we get (Along) A 'B', which is centrally symmetric to AB in relation to the point S (picture3)

Example 2.

Construct a triangle A 'B' C 'centrally symmetric to given triangle ABC if the center of symmetry:

- a) within the triangle
- b) outside the triangle

Solution:

Choose a point inside a triangle with (arbitrary), we can see in picture 1.

Merge the vertices of a triangle with the center of symmetry S and continue ... We have three lines .Thrust compass point in S and transmits the distance to A, B and C on the other hand the correspondinglines. (picture 2.)

Merge points, and obtained our required triangle A `B` C `, which is centrally symmetric to the given triangle ABC to the point S is inside the triangle.

b)

The procedure is analogous as under a) with only a point outside the triangle we choose arbitrarily

Example 3.

Construct a square with A 'B' C 'D' centrally symmetric given square ABCD if the center of symmetry:

- a) vertices C
- b) on BC

Solution:

a)

As specified the topics C center of symmetry, that is what your image at the same time, that is, for $C \equiv C$, for the other points do the procedure...

Arbitrarily choose a point S on BC and we do everything according to procedure...

Example 4.

Given angle of $\angle xOy$ transferred central symmetry with respect to point S (see picture)

Solution:

First, move threads of the angle (Figure 1)
To switch arm of Ox, we will take an arbitrary point A on the arm and move it ... (Figure 2) merge O `A` and thus get arm O `x` (Figure 3)

Example 5.

To rounds, are given, $k \in I$, but with different centers and O and O_1 , which are cut. Through one of the points of intersection withdraw the right circle that P these circles cut the same tendon leader.

Solution:

In Figure 1 We draw two given circles and marked with A single point of intersection of their circle.

The idea is that we map the central k symmetry circle compared to point A. To have it done it is enough to map the centre of O the circle k, and the radius will of course, remain the same. (Figure 2)

The intersection of the circle obtained k' the circle k_1 'gives us the point P. we pull a line right through the points A and P, we get point Q on the circle k. Tendon PA and QA su jednake. (Figure 3)

Why?

Recognize triangles APO' and AOQ.

These two triangles are matched, so PA=AQ.