CENTRAL SYMMETRY

Draw along. Let the S be its central point.

It is clear that $\mathrm{AS}=\mathrm{BS}$.

Points A and B are symmetryc to S. S is centre of symmetry.
For points A and B say that they are symmetric with respect to point S. Point S is the center of symmetry.
More can be said that the point A to point B symmetric relative to point S, ie that B is symmetric with respect to A in S.
Mapping of each point A and some planes α translates into a point $A `$ which is symmetric to the point A in relation to the point S with the plane α, called the central plane of symmetry α with center in S Central symmetry is usually marked with I_{S}, of course, if your teacher marks it differently and you do so...

If you are not confused, axisymmetry is similarly marked I_{s}, with a team that was down slightly in the index letter s.

For figure \boldsymbol{F} from plane α we say that maps in figure $F^{\text {` }}$ is central symmetry I_{S} if each point of \mathbf{A} figure F match point with a figure $\boldsymbol{A}^{`}$ figure $\boldsymbol{F}^{`}$ ' is a central symmetric point \boldsymbol{A} : $A^{`}=I_{S}(A)$ and vice versa.

Example 1.

Along AB is given. Construct along the central symmetry if the center of symmetry, the point S, no longer belongs.

Solution:

picture 1.

picture 2.

picture 3.

Merge vertices given long with a center of symmetry S and extend to the other side ... (picture 1)
Sting compass point in S, we take the distance to A (ie SA) and move, we got a point A ${ }^{`}$, and also to perform to point B, then the distance SB switch to another page and get ${ }^{`} \mathrm{~B}$ (picture2)

Obtained merge point A `and B `, we get (Along) A `B`, which is centrally symmetric to AB in relation to the point S (picture3)

Example 2.

Construct a triangle A`B` C `centrally symmetric to given triangle ABC if the center of symmetry:

a) within the triangle
b) outside the triangle

Solution:

picture 1.

picture 2.

Choose a point inside a triangle with (arbitrary), we can see in picture 1.
Merge the vertices of a triangle with the center of symmetry S and continue ... We have three lines .Thrust compass point in S and transmits the distance to A, B and C on the other hand the correspondinglines. (picture 2.)

Merge points, and obtained our required triangle A ` \(\mathrm{B}^{`} \mathrm{C}\) `, which is centrally symmetric to the given triangle ABC to the point S is inside the triangle.
b)

picture 1.

picture 2.

The procedure is analogous as under a) with only a point outside the triangle we choose arbitrarily

Example 3.

Construct a square with A ` \(\mathrm{B}^{\prime} C^{`}\) `` centrally symmetric given square $A B C D$ if the center of symmetry:

a) vertices C
b) on BC

Solution:

a)

As specified the topics C center of symmetry, that is what your image at the same time, that is, for $C \equiv C^{\prime}$,for the other points do the procedure...
b)

Pictures 1

Pictures 2

Arbitrarily choose a point S on BC and we do everything according to procedure...

Example 4.

Given angle of $\measuredangle x O y$ transferred central symmetry with respect to point \mathbf{S} (see picture)

Solution:

Figure 1

Figure 2

First, move threads of the angle (Figure 1)
To switch arm of Ox, we will take an arbitrary point A on the arm and move it ... (Figure 2) merge O `A ' and thus get arm O` x ’ (Figure 3)

Example 5.

To rounds, are given, k i k_{1}, but with different centers and O and O_{1}, which are cut. Through one of the points of intersection withdraw the right circle that \boldsymbol{p} these circles cut the same tendon leader.

Solution:

Figure 1

Figure 2

Figure 3

In Figure 1 We draw two given circles and marked with A single point of intersection of their circle.
The idea is that we map the central k symmetry circle compared to point A . To have it done it is enough to map the centre of O the circle k, and the radius will ,of course, remain the same. (Figure 2)

The intersection of the circle obtained k ' the circle k_{1} `gives us the point \mathbf{P}. wepull a line right through the points A and P , we get point Q on the circle k. Tendon PA and QA su jednake. (Figure 3)

Why?
Recognize triangles APO` and AOQ.

These two triangles are matched, so $\mathbf{P A}=\mathbf{A Q}$.

